A Gas-phase Electrochemical Reactor for Carbon Dioxide Reduction back to Liquid Fuels
نویسندگان
چکیده
We discussed here on a novel approach to recycle CO2 back to liquid fuels by using nanostructured carbon-based materials (doped with suitable metal nanoparticles) as electrocatalysts. This approach is based on the development of a new photo-electrocatalytic (PEC) reactor, working in gas phase, which is quite different from the conventional reactors that operate typically in aqueous slurry and/or in batch. Gas phase operation, under solvent-less conditions, has many advantages (easy recovery of the products, no problems of CO2 solubility, etc.) with respect to liquid phase. The reaction mechanism is also quite different and longer chains of products can be obtained. In particular we investigated the competition of the side reaction of H2 formation by water electrolysis (which is unavoidable in such kinds of systems) with the CO2 reduction process. The understanding of this competitive reaction is very significant in order to maximize the process performances. Moreover the capability to develop advanced nanostructured electrodes, by modulating their properties during the synthesis, allowed to improve the efficiency of the CO2 reduction process, enhancing the productivity and tuning the selectivity towards higher chain hydrocarbons and other chemicals. The CO2 reduction to liquid fuels by solar energy represents an attractive solution which may contribute to the alternative use of clean and renewable sources to cope with the depletion of fossil fuels. The target is to develop a sort of “artificial leaf” which may collect the solar energy as the nature does, by capturing directly CO2 and converting it back to fuels.
منابع مشابه
Aidic Conference Series
We report on the development of a novel electrochemical reactor working in gas phase for recycling CO2 back to liquid fuels. Operating in gas phase (without any solvent) has many benefits with respect to the conventional aqueous slurry reactors: no problems of CO2 solubility, easy and less costly recovery of the products, etc. The reaction mechanism of CO2 reduction is also quite different in g...
متن کاملElectrocatalytic Reduction of CO2 to Small Organic Molecule Fuels on Metal Catalysts
The electrocatalytic reduction of carbon dioxide (CO2) to liquid fuels has tremendous positive impacts on atomospheric carbon balance and help to reduce global warming issues. This paper reviewed current knowledge of electrochemical CO2 reduction to small organic molecule fuels on metal catalysts and gas-phase CO2 reduction techniques based on gas diffusion electrode and solid polymer electroly...
متن کاملElectrocatalytic Reduction of CO2 for the Production of Fuels: a Comparison between Liquid and Gas Phase Conditions
In this contribution we report on the electrocatalytic reduction of CO2 for the production of liquid fuels by using two different approaches under i) liquid and ii) gas phase conditions. The main aim of the work is the comparison of these two experimental setups, in terms of productivity, kinds of liquid compounds produced and efficiencies, due to the differences in the mechanism which underlay...
متن کاملHydrodynamics and mass transfer inthree-phase airlift reactors for activated Carbon and sludge filtration
A bioreactor refers to any manufactured or engineered device that supports a biologically active environment. These kinds of reactors are designed to treat wastewater treatment. Volumetric mass transfer coefficient and the effect of superficial gas velocity, as the most important operational factor on hydrodynamics, in three-phase airlift reactors are investigated in this study. The experiments...
متن کاملFabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution
In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...
متن کامل